
Systems Engineering And Assurance
Modeling (SEAM)

Vanderbilt University, Nashville, TN, USA.

19 July 2023

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Contents

1 Introduction to Model-Based Thinking 4
1.1 Understanding Model-Based Qualitative Systems Modeling 4
1.2 An Example of Quantitative Physical-Law Based Systems Modeling 5
1.3 The First Model-Based System Representation: The Block Diagram 6
1.4 The Second Model-Based System Representation: The Functional Decomposition Di-

agram . 7

2 Systems Engineering And Assurance Modeling (SEAM) 10
2.1 What is Model-Based Mission Assurance and SEAM? 10
2.2 Creating a SEAM Account . 10
2.3 Useful Resources . 12
2.4 Hosting a Local Version of SEAM . 13
2.5 SEAM Disclaimer . 13

3 SEAM - Project Management 15
3.1 Projects . 15
3.2 Managing Projects . 16
3.3 Navigation . 18

4 Libraries and Resources 21
4.1 Apps . 21
4.2 Definitions . 21
4.3 Libraries . 23
4.4 R&M Objective Hierarchy . 24
4.5 Requirements Models . 25

5 Goal Structuring Notation (GSN) Models 26
5.1 Definition of GSN Elements . 26
5.2 NASA R&M Objective Hierarchy . 28
5.3 Creating a GSN Model . 29
5.4 Example GSN Model . 31
5.5 GSN Resources . 34

6 SYSTEMSMODELING LANGUAGE (SYSML) MODELS 36
6.1 Definition of Boxes . 36
6.2 Creating a SysML Model . 38
6.3 Example SysML Model . 40
6.4 SysML Model Resources . 41

7 Functional Decomposition Models 42
7.1 Definition of Boxes . 42
7.2 Creating a Functional Decomposition Model . 42
7.3 Example Functional Decomposition Models . 43
7.4 Functional Decomposition Model Resources . 44

© Vanderbilt University 2

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

8 Linking Models 45
8.1 GSN + SysML . 45
8.2 SysML + Functional Decomposition Model . 45
8.3 Functional Decomposition + GSN . 45

9 SEAMOutputs 46
9.1 Coverage Check . 46
9.2 Creating a Coverage Check . 48
9.3 Fault Trees . 49
9.4 References . 51

10 SEAM STANDARD PARTS LIBRARY 52
10.1 Instructions for using the Standard Part Type Library 52

© Vanderbilt University 3

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

1 Introduction to Model-Based Thinking

1.1 Understanding Model-Based Qualitative Systems Modeling

Mostengineersworking in the spacearenaare typically trained inelectrical,mechanical, or aerospace
engineering. Hence, most of them understand detailed quantitative drawings and quantitative mod-
els, such as solving a circuit with Kirchhoff’s Laws to find a particular voltage in a circuit or drawing a
free body diagram to solve for forces in a static mechanical system. This kind of modeling is valuable
for understanding the behavior of a circuit or system in both a physical and mathematical manner.
Quantitative simulation tools such as LTSpice or MATLAB can also to help evaluate these kinds of
models when they get too complicated to solve by hand.

However, when the scale of a systembecomes so complex that quantitative tools are cumbersome to
use, the tools are less useful for design and/or analysis. Examples include an integrated circuit with
so many transistors that it would take weeks for an LTSpice simulation to run. Quantitative tools are
also less useful when there are many kinds of physical domains (e.g., mechanical, electronic, optical
in the same system) such as for spacecraft or self-driving cars. These tools are also less useful if there
a lot of software is managing the system’s behavior (for example, millions of lines of code in an air-
plane). A second practical issue is that during the beginning of the design cycle, many of the physical
parameters needed for quantitative modeling are unknown because the design is in flux. In these
situations, qualitative systemmodeling is more useful.

System models tend to be qualitative and logical, rather than physical and numerical, because the
computational cost of modeling components numerically increases steeply with the number of com-
ponents being modeled in the same simulation. In this chapter we use an op amp integrator to
demonstrate the differences between quantitative and qualitative models. It is not necessary to fol-
low the math, but it can help provide a more wholistic understanding of the processes. A qualitative
representation of a system is the approach taken in the SystemEngineering AssuranceModeling plat-
form (SEAM), which is discussed in thismanual. This chapter ismeant to help people trained in quan-
titative modeling make a transition to qualitative systemmodeling. We will first build a quantitative
model of the integrator circuit, then build a qualitative model of the same circuit using standard sys-
tem modeling diagrams. The purpose of this chapter is to help transition people with backgrounds
in specialized engineering of science to SEAM.

Before getting into the example, we should investigate reasons for using a model-based approach
to system models. We have already mentioned two reasons, namely, that modern systems, such as
satellites or robots are too complex to simulate the whole system numerically, and that many of the
physical parameters needed for quantitative models are unknown early in the design cycle. We can
add a third reason, which is that modern engineering is making a transition from “document-based
system engineering” (DBSE) to “model-based system engineering” (MBSE). In otherwords, instead of
specifying a system and capturing all the information about the system in documents, design engi-
neers are moving toward capturing all the specifications and information about the system in digital
(software) objects, which are stored in a central repository. This helps solve one of the toughest prob-
lems of large organizations designing complex systems, which is to make sure every person working
on the system isoperating fromthe samespecificationsand level of informationabout the systemata
given time (often called “versioning”). Prior toMBSE, keeping track of design changes and document
versions was a huge problem for large research and development organizations. People in differ-

© Vanderbilt University 4

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

ent departments, or different physical locations, could beworking fromdifferent document versions.
This would result in mistakes and unnecessary work to correct them. This approach is called “Multi-
ple Sources of Truth (MSOT). Under the MBSE paradigm, new versions are instantly created when a
change ismade and are available to everyone, and old versions can be stored for reference. This idea
of a “single source of truth” (SSOT) available to everyone working on the system is one of the great
benefits of an MBSE approach to documenting system designs.

1.2 An Example of Quantitative Physical-Law Based Systems Modeling

A small-scale example to illustrate these points about quantitative and qualitative modeling can be
seen in Figure I.1 , which shows an ideal inverting amplifier circuit configured so that the output is the
integral of the input. We canuse equationsbasedonphysical laws to relate the variableswe see in the
circuit. For example, we know that the voltage 𝑣𝐶 is related to the current 𝑖2 through the capacitor
by an integral expression:

𝑣𝐶 (𝑡) = 1
𝐶 ∫

𝑡

0
𝑖2 (𝜏) 𝑑𝜏+𝑉𝐶 (0)

Likewise, we can invoke the ideal property of the op amp that the feedback in the op amp circuit
always adjusts the voltages at the op amp input terminals to be zero, so 𝑣+ = 𝑣− = 0. That allows us
to write the current 𝑖2 in terms of the input voltage 𝑣1.

𝑖2 (𝑡) = 𝑣1(𝑡)
𝑅

We can insert this expression into our original expression and use the fact that 𝑣− = −𝑣2 to write the
final expression for the output voltage.

𝑣2 (𝑡) = −1
RC

∫
𝑡

0
𝑣2 (𝜏) 𝑑𝜏+𝑉𝐶 (0)

Hence if we can set the initial condition on the capacitor voltage to zero (just put a switch across it),
we can obtain an ideal integral relation between the output and the input voltages.

This example is the kind of modeling familiar to most engineers. It begins with a detailed physical
description of the system (the circuit schematic, in this case). The interaction of the components is
modeled in terms of equations derived from physical laws. Since the model is equation-based, we
could also simulate the circuit using a numerical simulator that solves differential equations. This
circuit would probably be included in a larger circuit, maybe included in an integrated circuit, which
itself would be on a circuit board, which might be part of an assembly of several circuit boards and
electromechanical parts, such as motors. Hence this approach is a bottom-up system description.

However, when we consider large engineered systems such as automobiles or spacecraft, at some
point the complexity of the system exceeds what can be modeled in this quantitative way. For one
thing, evenwithmodern computing power, the system gets too complex to be analyzed or simulated
in this quantitative way. In addition, we may not know with precision all the values of all the possi-
ble physical variables that are necessary for a detailed quantitative description of a large engineered

© Vanderbilt University 5

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

system. Lastly, such a complex physical representation is too complicated for one human being to
understand andmake decisions about the inter-relationships of the subsystems.

Figure I.1. An ideal op amp integrator circuit, with the input and output voltage waveforms.

1.3 The First Model-Based System Representation: The Block Diagram

In contrast to physical modeling, model-based thinking is less about mathematical relationships be-
tweencomponentsandmoreabout thearrangementsof components in the systemand the functions
of components and subsystems, i.e., what they are actually supposed to do. These are sometimes
called “logical models,” not because they are based on digital logic, but because they are based on
the logical relationships between components and the flow of signals and power through the sys-
tem. Hence these modeling languages describe the system in terms of various diagrams intended to
describe the form, function, and relationships of various parts of the system.

The systems-modeling part of SEAM is based on a language called SysML, which is short for Systems
Modeling Language1. SysML consists of a set of descriptive diagrams that capture various aspects of
the system. Let’s look at one of the most basic diagrams of SysML, the block diagram. In the block
diagramwe are not trying to describe detailed connections and behavior of a sub-system theway the
schematic of the integrator circuit does. Rather, we just want to capture the parts of the subsystem
and connections between them. Unlike a quantitative circuit schematic, which has only one correct
representation, a qualitativemodel can havemultiple forms for the same sub-system, depending on
what features the modeler wants to emphasize, and what level of abstraction is needed to represent
the aspects of the system themodeler is interested in.

Let’s look at a couple of examples of block diagrams for the integrator. The first is shown in Figure

1Sanford Friedenthal, AlanMoore, Rick Steiner, “OMGSysML™Tutorial,” www.omgsysml.org/INCOSE-OMGSysML-Tutorial-
Final-090901.pdf2 , INCOSE, 2009.

© Vanderbilt University 6

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

I.2. This block diagram roughly follows the configuration of the circuit schematic. However, this di-
agram represents the circuit at a higher level of abstraction, which means that it is simpler than the
schematic and some of the detailed information is lost. We have lost the definitions of the currents
and voltages, as well as the detailed connections between connections. The diagram is no longer
“solvable” using equations. All that remains is some information about which components are in the
system and some basic idea of how signals flow between them.

Figure I.2. Block diagram for the op amp integrator.

Now suppose that as amodeler I am interested in the signal processing aspects of the circuit. I could
represent the action of the circuit by the block diagram shown in Figure I.3. There is something that
creates an input signal, which is not specified, it could be a voltage source, a sensor, or another cir-
cuit. There is a block that represents the integrating action of the capacitor, which is not specified.
Lastly there is a block I have labeled as “scale factor” which represents the fact that the integral is
multiplied by (𝑅𝐶)−1, which produces the output signal, which could be voltage, or current, it is not
specified in the diagram. Both the block diagrams in Figure I.2 and Figure I.3 are valid block diagrams
of the integrator circuit schematic shown in Figure I.1, they are both higher-level abstractions of the
integrator that have less information but highlight particular aspects of the integrator. In Figure I.2
the signal flowbetween actual components is emphasized, in Figure I.3 the signal processing aspects
of the circuit are emphasized.

Figure I.3. Signal-processing block diagram for the op amp integrator.

1.4 The Second Model-Based System Representation: The Functional Decomposition
Diagram

Now let’s look at another way to represent the system behavior, namely, a diagram that describes
the relationships between a function of a sub-system and its constituent components. That is, in this
diagram, we assign some “responsibility” for part of the functionality of the subsystem to each of the

© Vanderbilt University 7

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

parts. This diagram is a keypart of being able todiscern the impact of a low-level failure ona top-level
function.

The top-level function in our example is “Integrate the input voltage.” In Figure I.4 we have redrawn
our integrator circuit to show actual components that are associated with the power source, 𝑉𝐷𝐷,
which is now shown to be a battery labeled 𝑉𝐵1, and the input signal, 𝑉1, which is now shown to be a
light sensor based on the phototransistor, 𝑄1. We also assigned number values to our previous com-
ponents R and C to show that in our circuit board they are specific instances of particular resistor and
capacitors. In other words, R is the general symbol for a resistor, but𝑅1 represents a particular physi-
cal resistor of a certain value and part number from a particularmanufacturer; it is the real resistor in
the physical world. For example,maybe𝑅1 is 2 kΩ, but in the next stage of the circuit there is another
2 kΩ resistor associated with an analog-to-digital converter. Both resistors fit into the general class
of 2 kΩ resistors, but physically they are different resistors, so we give themdifferent names; let’s call
the second resistor 𝑅4. So, the physical resistor 𝑅1 is associated with the function of “Integrate the
signal from the sensor,” but 𝑅4 is associated with the function “Convert the analog amplifier voltage
V2 to a digital code.” Now we are in a position to draw a functional decomposition diagram (𝐹𝐷𝐷),
which assigns responsibility for functions to particular instances of components.

Now that we see the whole picture, we know that what the circuit is really doing is averaging the
light flux illuminating the phototransistor, so we can call the system function: “Integrate the Light
Flux,” or “Average the Light Flux.” Figure I.5 shows an FDD for the integrator circuit of Figure I.4 for
this system function. The top-level system function is illustratedwith an upper-case F(x) symbol. The
system function is divided into sub-functions (labeled with a lower-case f(x)) which are all necessary
for the system function to be operational and within specification. The three sub-functions in this
case are: (1) provide power, (2) sense the light, and (3) integrate (or average) the sensor signal. Each
sub-function is then associated with the components “responsible” for performing the sub-function.
All components associatedwith a sub-functionmustwork correctly for the sub-function to be correct,
unless there is redundancy built into the system (for example, two capacitors in parallel in the inte-
grator). Now if there is a degradation or a failure in a component, we can see from the 𝐹𝐷𝐷 how that
failure is going to propagate up to the top-level and impact the system function. For example, let’s
say that the “gain,” that is, the proportionality constant between the light input and the current in
the collector of the transistor, is changed because of ionizing radiation. We can see this degradation
will affect both the sub-function “sense the light” and the system function “Integrate the light flux,”
because the averaged light output will differ from the actual physical value because the calibration

© Vanderbilt University 8

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

is off.

Figure I.4. Integrator showing the components associated with power and signals..

Figure I.5. Functional Decomposition Diagram for the function “Integrate the Light Flux.”

© Vanderbilt University 9

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

2 Systems Engineering And Assurance Modeling (SEAM)

2.1 What is Model-Based Mission Assurance and SEAM?

Model-based mission assurance (MBMA) is an alternative to document-based mission assurance for
establishing the risk and reliability of systems. It leverages block diagrams and fault trees that allow
for easy visualization of requirements and fault propagation.

SEAM (Systems Engineering and Assurance Modeling) is a web-based collaborative modeling plat-
form for modeling radiation assurance cases integrated with the models of the system. It is based
on NASA’s Reliability and Maintainability Standard. In SEAM, project teams can createmultiple types
of linked models for their systems that can be easily accessed by the entire project team. Some of
the types of models that can be created in SEAM are Goal Structuring Notation (GSN) models, Sys-
tem block models (SysML), fault propagation models, and Bayesian nets. These models can be used
independently or linked, and all members of a project can have access to them.

2.2 Creating a SEAM Account

Figure II.1. SEAMwelcome page.

Figure II.1 above shows the SEAM welcome page, which is available at https://modelbasedassuranc
e.org/. The “Log In” and “Register” links can be found in the upper right corner of the welcome page.
Clicking on the “Register” link will bring up the page shown in Figure II.2, below. After entering in the
requested information, reading and acknowledging the Disclaimer, and hitting “Request Account,”
an account will be created. The Disclaimer is reprinted at the end of this section. The user will be
notified via the email used to register when the account is ready, which can take up to one (1) week.

© Vanderbilt University 10

https://modelbasedassurance.org/
https://modelbasedassurance.org/

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

If you would like to run your own copy of SEAM locally, please see Section E of this chapter.

Figure II.2. SEAM newmembership registration page.

After an account is created, clicking the “Log In” button on the welcome page will bring up the log in
screen shown in Figure II.3. After entering the username and password used during registration, the
user will be taken to their Projects page. More on the Projects page and project management will be

© Vanderbilt University 11

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

covered in Section III – Project Management.

Figure II.3. SEAM user login page.

2.3 Useful Resources

This subsection contains links to useful resources for learning about SEAM and MBMA, examples of
SEAM+MBMA inuse, and resources that areuseful for radiationeffects analysis. It is not thepurposeof
this User Manual to describe how to use any of these resources and it is assumed that the user knows
how to use any external resources that are necessary for their projects. The most useful resources
for new users would be the first six (6) papers listed under the “Papers on SEAM and MBMA” bullet
point.

• NASA – https://www.nasa.gov/

• ISDE – http://www.isde.vanderbilt.edu/

• ISIS – https://www.isis.vanderbilt.edu/

• WebGME – https://webgme.org/

• NASA R&M Hierarchy – https://standards.nasa.gov/standard/nasa/nasa-std-87291

• RGentic – https://vanguard.isde.vanderbilt.edu/RGentic/

© Vanderbilt University 12

https://www.nasa.gov/
http://www.isde.vanderbilt.edu/
https://www.isis.vanderbilt.edu/
https://webgme.org/
https://standards.nasa.gov/standard/nasa/nasa-std-87291
https://vanguard.isde.vanderbilt.edu/RGentic/

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

• CRÈME – https://creme.isde.vanderbilt.edu/

• Spenvis – https://www.spenvis.oma.be/

• SCRAM – https://scram-pra.org/doc/opsa_support.html

• Papers on SEAM and MBMA:

– PowerPoint on Reliability & Maintainability Hierarchy – https://sma.nasa.gov/docs/defa
ult-source/News-Documents/r-amp-m-hierarchy.pdf

– Goal StructuringNotationStandard–http://www.goalstructuringnotation.info/documen
ts/GSN_Standard.pdf

– Master’s Thesis on MBAC+ and SEAM – https://etd.library.vanderbilt.edu//available/etd-
06302016-120807/unrestricted/austin.pdf3

– Goal Structing Notation in a Radiation Hardening Assurance Case for COTS-Based Space-
craft – https://modelbasedassurance.org/documents/GSN_GOMAC.pdf

– A CubeSat-Payload Radiation-Reliability Assurance Case using Goal Structuring Notation
– https://modelbasedassurance.org/documents/GSN_RAMS.pdf

– Towards a Framework for Reliability and Safety Analysis of Complex Space Missions – ht
tps://modelbasedassurance.org/documents/MBAC_AIAA.pdf

– Reliability Assurance of CubeSats using Bayesian Nets and Radiation-Induced Fault Prop-
agation Models – https://modelbasedassurance.org/documents/GSN_NEPPETW.pdf

2.4 Hosting a Local Version of SEAM

Clearly the AWS public version of SEAM is meant to be used with non-proprietary information. If you
or your organization would like to host a free version of SEAM on your own server behind your own
firewall, simply contact the SEAM administrator and we will arrange to send you a Docker Container
(www.docker.com), that will easily run SEAM on your server so that you can use it tomodel your own
proprietary or restricted information systems.

2.5 SEAM Disclaimer

The SEAM tool set and the associated models have been prepared for the Radiation Effects research
community for informational purposes that are not export controlled. Your privacy and security are
important to us; please [do not] upload any data that is [controlled unclassified information, ex-
port controlled, or considered to be intellectual property.]

Please provide a professional email address that we will use only to confirm your registration. Your
registration information may be reviewed by our sponsor whose approval is necessary to grant ac-
cess.

Note: The content of this website and the SEAM tool set are considered ”Beta Software”.

3https://etd.library.vanderbilt.edu/available/etd-06302016-120807/unrestricted/austin.pdf

© Vanderbilt University 13

https://creme.isde.vanderbilt.edu/
https://www.spenvis.oma.be/
https://scram-pra.org/doc/opsa_support.html
https://sma.nasa.gov/docs/default-source/News-Documents/r-amp-m-hierarchy.pdf
https://sma.nasa.gov/docs/default-source/News-Documents/r-amp-m-hierarchy.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
https://modelbasedassurance.org/documents/GSN_GOMAC.pdf
https://modelbasedassurance.org/documents/GSN_RAMS.pdf
https://modelbasedassurance.org/documents/MBAC_AIAA.pdf
https://modelbasedassurance.org/documents/MBAC_AIAA.pdf
https://modelbasedassurance.org/documents/GSN_NEPPETW.pdf
https://etd.library.vanderbilt.edu/available/etd-06302016-120807/unrestricted/austin.pdf

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Vanderbilt University disclaims all warranties with regard to this software, including all implied war-
ranties of merchantability and fitness. In no event shall Vanderbilt University be liable for any spe-
cial, indirect or consequential damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

© Vanderbilt University 14

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

3 SEAM - Project Management

3.1 Projects

After you have logged in to your account you will see the Projects page, shown in Figure III.1 below.
This page shows all the projects that a user has access to, either as an owner, editor, or as read�only.
From here, projects can be opened or created. An existing project can be opened by clicking on the
project’s name or a new project can be created by clicking on “Create new…”, shown in the blue and
red boxes in Figure III.1. Opening an existing project will take the user to that project’s homepage, an
example of which is shown in Figure III.2.

Figure III.1 Projects page as seen after logging in to SEAM. The blue box shows an example exist-
ing project that can be opened. The red box shows the “Create new…” button.

Before a new project is created, users must input a name for the project in the text box that appears
next to the “Create new” button. There are three options for creating a new project: (1) creating a
project from a seed project, (2) creating a duplicate of an existing project, or (3) importing a project
from a file. These options appear in Figure III.3. Creating a project from an existing seed project cre-
ates a new project from an existing snapshot. It can either be a template file-seed available on the
server or a branch from one of the existing projects. The new project will have a single commit4 and
a branch (master) pointing to the commit5. Blank projects can be created in this way. Duplicating a
project will make a full copy of an existing project with its entire history. This includes all commits,
branches, and data-objects. Finally, importing a project from a file creates a new project from the
uploaded snapshot. The new project will have a single commit and a branch (master) pointing to the
commit6. Once the newproject has been created users will be taken to the project home page, which

4./definitions.md#Commit
5./definitions.md#Commit
6./definitions.md#Commit

© Vanderbilt University 15

./definitions.md#Commit
./definitions.md#Commit
./definitions.md#Commit

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

looks like that shown in Figure III.2.

Figure III. 2. Project homepage. Navigation tools are on the right, modules that can be added
are on the left. The “User_Manual_Example” folder contains all themodels used in this project.
Annotations can be added to any page to provide context.

Figure III. 3. Project creation options. (Top left) Create new project using an existing seed, cho-
sen from thedropdownmenu. (Top right) Create newproject by duplicating an existing project,
also chosen from a dropdownmenu. (Bottom) Create new project by importing a file.

3.2 Managing Projects

On the top-right of all SEAM pages is the user’s username. Clicking on the usernamewill bring up the
GMEProfile page, shown in Figure III.4. From this page, users can manage their profile and projects,
see which organizations they belong to, and see a list of SEAM users. On the Projects page, users will
see a list of projects they have access to, either as a user or as the owner. An example Projects page

© Vanderbilt University 16

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

is shown in Figure III.5.

Figure III. 4. GMEProfile page. Dashboard allowing users to manage their profile and projects,
see which organizations they belong to, and see a list of other SEAM users.

Figure III. 5. Projects page. Shows all the projects a user has access to andwho the owner of the
project is. Clicking on a project’s namewill take you to the project’s information page.

A project’s information page can be accessed by click on its name in the list of projects. Figure III.6
shows the project information page for the KLR_SEAM_Example project that has been used for previ-
ous figures. A list of userswith access to theproject and their permissions is shownon the left. Adding
collaborators is on the right (green box) and is done by searching for the user’s SEAM username. Per-
missions are set by clicking on the “R” (for read), “W” (for read andwrite), and “D” (for read,write, and
delete). The box beneath Add Collaborators shows statistics for the project, including when it was
lastmodified, when it was last viewed, when it was created, and a breakdown of commits by user. On
the bottom left of the page, shown in the red box, is the “Delete Project” button which permanently

© Vanderbilt University 17

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

deletes the project.

Figure III. 6. Project Information Page. Provides information about a specific project includ-
ing list of approved users and a breakdown of commits by user. Approved collaborators can be
added, user permissions can be changed, and the project can be permanently deleted from this
page.

3.3 Navigation

From the project homepage, shown in Figure III.2, there are multiple ways to navigate through a
project. Double-clicking on the top-level folder, called User_Manual_Example here, will take the user
to the main-level folder, shown in Figure III.7. The main-level folder contains all the libraries and ref-
erences for the project (shown in the gold box in Figure III.7), and all the models used in the project
(shown in the green box in Figure III.7). Libraries, references, and models can be added by dragging
the appropriate block from the column on the left (shown in the blue box in Figure III.7). Double-
clicking on any of the folders will take the user into that folder. Alternatively, users can use the drop-
down navigation bar on the right (shown in red in Figure III.7) to navigate into any subfolder. There is
an arrow located in the upper left corner (just below and to the right of the yellow box in Figure III.8)
that will take users up one level in the project. Finally, by clicking on the SEAM logo in the upper left
(shown in the yellow box in Figure III.8) users can switch to a different project, create a new project,

© Vanderbilt University 18

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

or import an existing project.

Figure III. 7. Project Main-Level. Libraries, resources, andmodels can be added by dragging the
appropriate box from toolbar on the left (blue box). Libraries, resources, and models can be
accessed by double-clicking the appropriate folder (gold and green boxes. Alternatively, sub-
folders can be accessed byusing the navigation plane on the right (red box). Users can switch to
different projects, create new projects, or import current projects by clicking on the SEAM logo
in the upper left corner (yellow box)

Another useful navigation feature in SEAM is the ability to split the screen, allowing for two different
pages to be active at the same time. Figure III.8 shows an example of split screen, with a functional
model being open on the left and a SysML model open on the right. Split screen can be activated by
clicking on the split screen symbol in the upper left toolbar (blue box in the figure). Split screen can
also be deactivated by clicking on the symbol again and choosing the appropriate option. With split
screen open, users can navigate through different areas of the project simultaneously. Clicking on
either side of the screen will cause that screen to be “active,” allowing for navigation in the screen.
Items can be copied from one area of the project to another by dragging the desired item across the
split to the other screen. This is particularly useful when utilizing libraries, which are discussed in
more detail in Chapter IV – Libraries and Resources.

Figure III. 8. Split Screen View. Split screen can be activated/deactivated by clicking on the split
screen icon in the upper left toolbar (blue box). Split screens also for simultaneous navigation

© Vanderbilt University 19

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

of different areas of the project.

© Vanderbilt University 20

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

4 Libraries and Resources

SEAMprovides access to several internal libraries and resources that projects canmake use of, shown
in Figure IV.1. TThe available resources include embedded applications, the NASA R&M Objective Hi-
erarchy in GSN format, and example Requirement Models. There are two types of libraries available
in SEAM: the Definitions folder containing failure labels for SysML models and tags for GSN models;
and Libraries folder that contain model SysML components and subsystems. Each of these libraries
and resources will be talked about individually in this chapter.

Figure IV.1 All the libraries and resources currently available in SEAM.

4.1 Apps

SEAM can run web-based applications locally, through the Apps folder. Figure IV.2 shows the Apps
page and available applications. Applications are opened locally in the SEAM project and run like
normal, including any login information. There are currently only two apps available, but more will
become available in the future.

Currently available applications:

• CRÈME (https://creme.isde.vanderbilt.edu/)

• R-GENTIC (https://vanguard.isde.vanderbilt.edu/RGentic)

Figure IV.2 Apps page. Currently available applications that can included in SEAM projects are
CRÈME and R-GENTIC.

4.2 Definitions

The Definitions folder contains sub-libraries for labels and tags used throughout a project to link dif-
ferent models together and complete coverage checks. The two available sub-libraries are Failure

© Vanderbilt University 21

https://creme.isde.vanderbilt.edu/
https://vanguard.isde.vanderbilt.edu/RGentic

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Label and Tag Library, shown in Figure IV.3. More Definitions sub-libraries may be added in the fu-
ture as the need arises.

Figure IV.3 Definitions folder page. FailureLabels and TagLibrary subfolders are contained
within.

Figure IV.4 shows the FailureLabel sub-library with nine (9) pre-made failure labels. Failure labels
are used in SysMLmodels to identify the specific effects (consequences) caused by a failure mode to
propagate through the connections, as shown in Figure IV.7. The failure labels shown in the figure are
generic labels that are used in SysML model templates and are given as examples. Table IV.1 gives a
brief definition for each of the default failure labels. Users can add as many failure labels as needed
for their projects by dragging more “FailureLabel” blocks from the toolbar on the left into the main
folder page.

Figure IV.4FailureLabel folderpage. Failure labels tobeused throughout theprojectare created
here.

Table IV.1. Definitions of example failure labels.

Failure Label Definition

Detla_Power_Event A temporary, self-recovering change in power.

© Vanderbilt University 22

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Failure Label Definition

Step_Power_Change An abrupt change from a high power state to a low
power state or vice versa. The change in power state
persists until the system acts on it.

Gradual_Power_Change A slow change in power state over time.

Incorrect_Power_State An incorrect power state.

Transient_Signal_Error A temporary, self-recovering change in signal.

Persistent_Signal_Error An abrupt change in signal state that persists until the
system acts on it.

Stuck_Signal_Error A persistent change in signal state that cannot be acted
upon.

Parametric_Signal_Change A slow change in single state over time.

Loss_of_Signal A loss of signal.

The TagLibrary page is shown in Figure IV.5. Tags are used in GSN elements that are cross referenced
in SysML models to associate the SysML model to its GSN goal. The tags are presented in coverage
checks for the GSNmodels. The example TagLibrary folder only contains one tag, “RadiationCheck,”
but users are able to create as many tags as needed by dragging more “Tag” blocks from the toolbar
on the left into the main folder page.

Figure IV.5 TagLibrary folder page. Tags to be used in GSN models for the project are created
here.

4.3 Libraries

TheLibrary folder contains template SysMLmodels that canbeused throughout anySysMLmodels in
the project. Projects can have an unlimited number of Library folders. Figure VI.6 shows an example
library that contains four (4) SysML models of commonly used components in the system. Models
in libraries can havemultiple instances throughout a project, and all instances automatically update

© Vanderbilt University 23

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

when the library model is updated. This reduces the amount of time spent updating models when
changes are made to system components. Figure IV.7 shows the SysML fault model for the Sensor
component within the Library. All aspects within this model are carried over to all instances of this
model in the project. If any aspect is changed, it is also changed in all instances. More is said about
the specifics of SysMLmodels in Chapter 6.

Figure IV.6 Library page. This example Library contains four (4) SysML components.

Figure IV.7 Sensor fault model in Library.

4.4 R&MObjective Hierarchy

The NASA Reliability and Maintainability (R&M) Standard “specifies technical objectives and related
strategies for NASA programs and projects to be used in planning, executing, and evaluating Relia-
bility and Maintainability,7” and is expressed in GSN format. This standard provides a useful starting
place for GSNmodels.

7Sanford Friedenthal, AlanMoore, Rick Steiner, “OMGSysML™Tutorial,” www.omgsysml.org/INCOSE-OMGSysML-Tutorial-
Final-090901.pdf8 , INCOSE, 2009.

© Vanderbilt University 24

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Link to NASA R&M Standard: https://standards.nasa.gov/standard/nasa/nasa-std-87291

Figure IV.8 NASA R&M Objective Hierarchy. The Hierarchy is in GSN format as a reference for
users.

4.5 Requirements Models

Requirements models can be created from scratch following SysML standards or imported from
Cameo/ MagicDraw models. Requirements in the requirement models are cross-referenced with
goals in GSN models to indicate where certain Goals in GSN model are derived from. Figure IV.9
shows example requirements.

Figure IV.9 Requirements Model page.

© Vanderbilt University 25

https://standards.nasa.gov/standard/nasa/nasa-std-87291

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

5 Goal Structuring Notation (GSN) Models

Goal Structuring Notation (GSN) assurance cases are used to document and develop assurance cases
and can be developed in parallel with the SysML and Functional Decomposition models within the
SEAM tool. Assurance cases are “reasoned, and compelling arguments supported by evidence that
a system will operate as intended for a given, defined environment”. Assurance cases document an
argument, but do not ensure the truth of the argument; assurance cases based on faulty reasoning
or premises can lead to premature system failure. References to the GSN Community Standard and
NASA Std 8719.1A are provided within SEAM, and the NASA R&MObjectives Hierarchy (fromNASA Std
8719.1A) is provided in GSN format for reference. This chapter describes how tomakeGSN assurances
cases in SEAM and provides a GSN example and GSN-based resources. Linking a GSN assurance case
with other SEAM models such as fault propagation model is described in Chapter VIII – Linking Mod-
els.

5.1 Definition of GSN Elements

GSN is amethod of graphically documenting an assurance case that provides a standard for structur-
ing the argument. The various GSN model elements and their definitions are presented below. GSN
models typically start with a goal for the system. This goalmay be conditioned by a context, such
as mission environment and duration, which frames how goals and strategies should be inter-
rupted. Astrategy is developed formeeting the goal. From there, sub-goals and substrategies
are used to break the argument down until a goal or strategy can be supported by a solution.
Solutions are evidence for the argument, and can be test reports, simulation results, or any other
piece of information that supports the claim beingmade. Justifications are used to explain why
goals and strategies are acceptable in the argument. Other elements are available in the SEAM GSN
models that allow for the assurance case to be connected to other SEAMmodels.

Table V.1 GSN Elements.

NAME IMAGE DESCRIPTION

Assumption Assumption boxes are used to
document what assumptions
are being made about a
strategy, goal, or solution.

Choice Junction Choice junctions allow for M
out of N logic paths to be used
to prove a goal.

© Vanderbilt University 26

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

NAME IMAGE DESCRIPTION

Context Context boxes are used to
frame how a claim or set of
reasoning should be
interpreted.

Goal Goal Goals are the claims the
assurance case are trying to
prove.

GSN Model Contains a GSNmodel that can
be linked to or used as a
sub-model.

InContextRef Reference to contexts used
elsewhere in a SEAM GSN
project.

Justification Justifications provide an
explanation as to why a certain
claim or argument is
acceptable.

Requirement Reference Reference to project
requirements that are
contained in the project’s
Requirements Model.

Solution Solutions provide evidence
supporting the truth of an
argument.

© Vanderbilt University 27

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

NAME IMAGE DESCRIPTION

Strategy Strategy Strategies are
reasoning steps to help show
the validity of the goal.

Support Reference Support Reference Reference
to support material used
elsewhere in the SEAM project.

5.2 NASA R&MObjective Hierarchy

The NASA Reliability and Maintainability (R&M) Standard “specifies technical objectives and related
strategies for NASA programs and projects to be used in planning, executing, and evaluating Reliabil-
ity and Maintainability.” A version of the R&M Hierarchy is included in GSN format for reference, and
was briefly discussed in Chapter 49. Figure V.1 shows the top-level view of the R&M Hierarchy which
specifics the overall top-level goal for a system, “performs as required over the lifecycle to satisfy
mission objectives,” a top-level strategy, and four subgoals that work to meet the overall top-level
goal. These subgoals provide excellent starting places for GSN arguments formany different types of
systems.

Figure V.1 NASA R&MObjective Hierarchy in SEAM GSN format as a reference for users.
9chapter4.md

© Vanderbilt University 28

chapter4.md

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

5.3 Creating a GSNModel

Starting a GSNmodel from scratch begins with the canvas shown in Figure V.2. The simulation space
(given by the orange box) is initially empty. GSN elements can be dragged and dropped from the list
on the left (red box). The Object Browser (green box on the right) provides a means of navigating
to other models within the project and the Property Editor (blue box on the right) is used to modify
properties of the GSN elements.

Figure V.2. Empty GSN model. GSN elements (red box) can be dragged and dropped into the
simulation space (yellow box) to create GSN models. The property editor (blue box) is used to
manage the properties of the GSN elements and the object browser (green box) can be used to
navigate to different models within the project.

Once a GSN element has been placed in the simulation space its properties can be changed, and text
can be added. Figure V.3 shows a goal element that has been placed into the simulation space (upper
left), as well as the element’s Property Editor (upper right), and the element’s Edit Description box
(bottom). Clicking on the cog icon (orange box) brings up the Edit Description box, which allows users
to add text descriptions to the GSN elements. This is where the actual goals, solutions, etc. would be
typed out by the user. Right clicking on the GSN element once brings up its properties in the Property
Editor. ForGSNelements, themost importantproperties are the “InDevelopment” true/false flag, the
“Meets Criteria” dropdownbox, and the “name” text box. The “name” property is used to give unique
names to the GSN elements. Here, the element’s name is “Goal,” however it could be changed to
somethingmore specific, like “Goal 1.A.” The “Meets Criteria” dropdownbox allows for GSN elements
to be tagged as meeting criteria, not meeting criteria, partially meeting criteria, or it is unknown if it
meets criteria. This creates a record of which arguments satisfy the claim being made and which do
not. Finally, the “In Development” flagmarks which GSN elements are completed, andwhich are still
being developed. The diamond mark on the GSN element in Figure V.3 (red box) denotes that this
element is still in development. When the flag is set to false, the diamond will disappear, allowing

© Vanderbilt University 29

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

users to easily see which elements are still in development and which are complete.

Figure V.3. A Goal GSN element (top left). The Goal’s text can be edited by clicking on the cog
(orange box), which brings up the Edit Description prompt (bottom). The property editor (top
right) shows the different attributes of the element that can be modified. This GSN element is
still in development (red box)

All GSNelements contain the sameset of properties and test boxes. By addingdifferentGSNelements
and linking them together, a GSN argument can be constructed. Table V.2 provides a list of the possi-
ble connections for the basic GSN elements from Table V.1. The solid lines represent connections in
the argument, while dashed lines represent supporting documentation for the specific element the
arrows are coming from.

Table V.2 GSN Elements Connections.

CONNECTION IMAGE DESCRIPTION

Goal-to-Strategy
Strategy-to-Goal

Goals and Strategies can be
connected to each other in
either direction.

Goal-to-Solution
Strategy-to-Solution

Goals and Strategies both
connect to Solutions.
Solutions are unable to form
connections.

© Vanderbilt University 30

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

CONNECTION IMAGE DESCRIPTION

Goal-to-Assumption
Strategy-to-Assumption

Goals and Strategies both
connect to Assumptions.
Assumptions are unable to
form connections.

Goal-to-Context
Strategy-to-Context

Goals and Strategies both
connect to Contexts. Contexts
are unable to form
connections.

Goal-to-Justification
Strategy-to-Justification

Goals and Strategies both
connect to Justifications.
Justifications are unable to
form connections.

A complete GSN argument would have no elements marked as still in development, and preferably
all argument chains would be labeled a meeting criterion.

5.4 Example GSNModel

An example GSNmodel has been made for a generic embedded system. The generic embedded sys-
temexample is used throughoutChapters V –VIII todemonstrate the various capabilitieswithinSEAM.
GSNmodels formore specific systems can be found in the references provided at the end of the chap-
ter. Figure V.4 shows the top-level goal for this system: “System is able to register environmental
stimulus for intended lifetime, environment, operating conditions, andusage,”which justmeans that
the example system remains operational for the duration of themission. This goal was taken directly
fromtheNASAR&MHierarchy (described in thenext subsection), but ina realistic systemthe top-level
goal would be more specific to the mission objectives. Context for the top-level goal, provided next
to it, includes the proposedmission environment such as the orbit andmission lifetime. Other types
of contextmay include functional and behavioral models of the system andmission constraints such
as size, weight, and power constraints. The top-level strategy for this GSNmodel is to “prevent faults
and failures, provide mitigation capabilities as needed to maintain an acceptable level of functional-
ity considering safety, performance, and sustainability objectives.” This strategy was taken directly

© Vanderbilt University 31

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

from the NASA R&M Hierarchy as a starting point for developing this model.

Figure V.4. Top-level goal, top-level strategy, andmission environment context for an example
GSN argument.

Beneath the top-level goal and strategy, sub-goals and sub-strategies are used to breakdown the ar-
gument until a goal can be supported directly by a piece of evidence. Figure V.5 shows some of the
sub-level goals that help support the top-level goal and strategy. To ensure this example system can
meet its top-level goal, the system needs to be “tolerant to faults, failures, and other anomalous in-

© Vanderbilt University 32

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

ternal and external events,” as do each of the system’s subsystems.

Figure V.5. Sub-goals used to support the top-level strategy.

Sub-goals continue to be broken down into more sub-goals and sub-strategies until a goal can be
supported directly with evidence and then marked complete. Figure V.6 shows the rest of the GSN
argument for Goal 2.2 “Sensor Subsystem is tolerant to faults, failures, and other anomalous internal
and external events.” This sub-goal has one strategy that was taken from the NASA R&M Hierarchy,
and two sub-goals have been identified as paths toward demonstrating the Goal 2.2 has been met.
These sub-goals are specifically related to the possible radiation effects, total ionizing dose (TID) and
single event effects (SEEs), that may occur in the Sensor Subsystem. Both sub goals 2.2.1 and 2.2.2
are considered complete because they have completed solutions that show the goals have beenmet.
Testing was done for both types of radiation effects and the Sensor Subsystem was found to remain
within specifications. Test reports could be attached to these solutions as evidence of the goals being
met. Goal 2.2.2,which relates toSEEs, alsohas a justificationattached to it., whichexplainswhy some

© Vanderbilt University 33

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

amount of SEEs in the Sensor Subsystem are considered acceptable to the overall project.

Figure V.6. A completed GSN argument for sub-goal 2.2with solutions that can be supported by
evidence and justifications for why certain behaviors are acceptable.

Goal 2.2 is considered complete and the “InDevelopment”markerdoesnot appearonanyof theargu-
ments beneath it. In order for the top-level goal to be complete, all sub-goals beneath it need to have
completedarguments andno longerbe “InDevelopment.” Once that is true, theGSNargument is con-
sidered complete. It should be reiterated that a complete GSN argument does not necessarily mean
the argument is true and valid, or that the argument will not change during a project’s lifetime.

5.5 GSN Resources

• NASA R&M Objectives Hierarchy (Standard10, Slides11)

• Goal Structuring Notation standard12

10https://standards.nasa.gov/standard/nasa/nasa-std-87291
11https://sma.nasa.gov/docs/default-source/News-Documents/r-amp-m-hierarchy.pdf
12https://scsc.uk/gsn

© Vanderbilt University 34

https://standards.nasa.gov/standard/nasa/nasa-std-87291
https://sma.nasa.gov/docs/default-source/News-Documents/r-amp-m-hierarchy.pdf
https://scsc.uk/gsn

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

• R. A. Austin “A Radiation-Reliability Assurance Case using Goal Structuring Notation for a Cube-
Sat Experiment,” M.S. Thesis, Vanderbilt University, July 6, 201613

• A. Witulski et al., “Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-
Based Spacecraft,” GOMAC 201614

• R. A. Austin et al., “A CubeSat-Payload Radiation-Reliability Assurance Case using Goal Structur-
ing Notation,” RAMS 2017.15

• J. W. Evans et al., “Towards a Framework for Reliability and Safety Analysis of Complex Space
Missions”16

13https://ir.vanderbilt.edu/handle/1803/12763
14https://modelbasedassurance.org/documents/GSN_GOMAC.pdf
15https://modelbasedassurance.org/documents/GSN_RAMS.pdf
16https://modelbasedassurance.org/documents/MBAC_AIAA.pdf

© Vanderbilt University 35

https://ir.vanderbilt.edu/handle/1803/12763
https://modelbasedassurance.org/documents/GSN_GOMAC.pdf
https://modelbasedassurance.org/documents/GSN_RAMS.pdf
https://modelbasedassurance.org/documents/MBAC_AIAA.pdf

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

6 SYSTEMSMODELING LANGUAGE (SYSML) MODELS

Systems Modeling Language (SysML) is a graphical language for systems engineers, for representing
a complex system in terms of its structure, behavior, and dependencies. The model construction
process utilizes and arranges SysML “blocks” in such a way that it captures the system’s architecture
and its behavior . Specifically, the blocks represent all possible means by which the system can re-
spond to environmental stimulus. This type of schematic, which consists of blocks in their correct
arrangement according to its system architecture, can be presented to non-technical contributors
(e.g., customers, funders, etc.) because it is an intuitive top-level view of the system. Also, as can
be inferred, SysML is also useful in managing the development of complex systems and enhancing
knowledge capture.

6.1 Definition of Boxes

A SysML block diagram describes the system’s structure by focusing on the flow of information (data)
and power through the system. The diagram is composed of blocks and interconnections. A block
(Figure VI. 1, top image) represents a system component that encapsulates all the details of that com-
ponent (for example, constraints and properties). The name of the block can be changed by going to
the ‘Attributes’ section on the right side of the work screen and changing the block’s name in ‘name’
(Figure VI. 1, top image). It is also possible to change the border color of the SysML block by going to
‘Preference’ on the right side of the screen (after clicking the block) and clicking the empty rectangle
next to ‘borderColor’ under ‘Color.’ Similarly, the color of the SysML block itself can be changed by
clicking the empty rectangle next to ‘color’ (Figure VI. 1, middle image).

Ports on the blocks represent interfaces that can allow blocks to connect with each other via inter-
connections. These interconnections represent how the blocks interact with each other.2 The colors
of a connection between blocks can be adjusted by clicking the connection and going to ‘Preference.’
From there, the user can change the color by clicking the empty rectangle next to ‘color’ under the

© Vanderbilt University 36

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

‘Color’ tab (Figure VI. 1, bottom image).

Figure VI.1. All properties of a SysML Block

© Vanderbilt University 37

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

6.2 Creating a SysML Model

To create a SysMLmodel, the usermust first create a ‘System_Model’ library folder andenter it (Figure
VI. 2).

Figure VI.2. Workspace containing the ‘System_Model’ Folder.

This folder already has a pre-created SysML schematic (Figure VI. 3). It consists of four blocks inter-
connected in variousways. In order to create a block (Figure VI. 4), the userwill need to drag anddrop
a block from the left-side bar onto the screen. Blocks can be connected via ports.

Figure VI.3. System Architecture Schematic within the ‘System_Model’ Library Folder

Figure VI.4. Example of a SysML block. In this case, it is a Sensor block.

© Vanderbilt University 38

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Double-clicking inside any of these blocks (such as Figure VI. 4) allows the user to view the failure
modes within the clicked block (Figure VI. 5). In the case of the Sensor block, we see an input power
port (‘Power_In’) two ‘Failure Modes’ (Total_Ionizing Dose and Single_Event_Effect), two ‘Anomalies’
(Degraded_Signal andTransient_Incorrect_Signal), andoneoutput signal port (Sensor_Output). The
twoanomalies alsohave failure labels identifyinghowtheanomalies areexpressedat theoutputport.
For example, ‘Persistent_Signal_Error’ is an error that can be recovered from by resetting the system.
‘Stuck_Signal_Error’ is an error that causes permanent damage and cannot be changed back. All
other failure labels can be found in Figure VI. 6, with definitions for each failure label located on the
right box titled ‘Annotation’ in Figure VI. 6.

© Vanderbilt University 39

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Figure VI.5. Schematic of Failure Modes for the Sensor Block

Figure VI.6. . List of all possible Failure Labels with definitions

6.3 Example SysML Model

A SysML block diagram can be found in Figure VI. 7. This figure represents a sensor by showing all the
individual subsystems that compose this system: the sensor subsystem, the microcontroller subsys-

© Vanderbilt University 40

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

tem, the output subsystem, and the power subsystem.

Figure VI.7. SysML block diagram of a system using a sensor. Each block represents an abstrac-
tion of a subsystem: Sensor subsystem (S1), Microcontroller subsystem (MC1), Output subsys-
tem, and Power subsystem3

6.4 SysML Model Resources

1. ObjectManagementGroup, “SysMLDiagramTutorial,” SysML.org. https://sysml.org/res//tutorials/sysml-
diagram-tutorial/index.html (accessed Sep. 08, 2021).

2. K. L. Ryder et al., “SYSTEMS ENGINEERING AND ASSURANCE MODELING (SEAM): A WEB-BASED
SOLUTIONFOR INTEGRATEDMISSIONASSURANCE,” FactaUniversitatis, Series: Electronics and
Energetics, vol. 34, no. 1, Art. no. 1, Feb. 2021.

© Vanderbilt University 41

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

7 Functional Decomposition Models

The Functional Decomposition Model (FDM) of a system demonstrates what functions the system
implements and how they relate to components of the system. The functions themselves are de-
scriptions of capabilities set by requirements/specifications, and represent a form of abstraction for
assessing reliability, availability, and safety of a system. The system takes the form of a hierarchi-
cal assignment of responsibility for the accomplishment of a function to sub-functions and compo-
nents.1

7.1 Definition of Boxes

Functions, represented as F(x), are connected to sub-functions, represented as f(x)), which are con-
nected to specific instances of components that support the sub-function1. In the figure below, only
one component is associated with each sub-function. However, in practice, each sub-function can
be associated with as many component instances as necessary1.

In a typical system, the sub-functions (most often) involve one of the following: power, sensing, com-
putation, actuation, or radiation effect mitigation. Functions typically refer to one of the following: a
form of user input or output, or a form of remote communication1.

7.2 Creating a Functional Decomposition Model

In order to create a Functional Decomposition Model, the user must first drag and drop a ‘Func-
tion_Model’ folder from the left side of the screen in Figure VII. 1 onto the main workspace. It is
important to note that Figure VII. 1 has been prefilled and would normally appear empty for a new
project.

Figure VII.1. Workspace where user drags and drop a ‘Function_Model’ Library onto the
workspace

After double-clicking into the ‘Function_Model’ folder, the user can construct the Functional Decom-
position Model (Figure VII. 2). The user can drag a top function block from the left side of the screen

© Vanderbilt University 42

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

onto the workspace. The user can also relabel that function by clicking the block, looking to the at-
tributes section on the bottom right side of the screen, and changing the name for that block.

The user can create primitive functions in the same manner, as well as rename the primitive func-
tions in the same manner. Once all user-desired top functions and primitive functions are added
onto the workspace, the user can connect top functions to primitive functions by hovering over the
top function, clicking one of the sides of the block, and dragging it to one of the inputs of the prim-
itive functions. The ‘Power-Ref,’ ‘Sensor-Ref,’ ‘Microcontroller-Ref,’ and ‘Output-Ref’ are examples of
linking SysML models into the Functional Decomposition Model and will be discussed in Chapter 8
(titled “Linking Models”).

Figure VII.2. Completed Functional Decomposition Model

7.3 Example Functional Decomposition Models

Figure VII.3. Example of a Functional Decomposition Model [1]

Figure VII. 3 represents an example of a functional decomposition model. It begins with a high-level
function F(x) and branches off into multiple smaller sub-function (or primitive functions) f(x). These
sub-functions vary for Power functions, Sensing function (for probing the environment and system
itself), Calculate Response function, Output Stimulus function, andMitigation function. Through link-
age, these subfunctions can be connected to SysML models (which will be discussed in Chapter 8
titled “Linking Models”).

© Vanderbilt University 43

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

7.4 Functional Decomposition Model Resources

1. K. L. Ryder et al., “SYSTEMS ENGINEERING AND ASSURANCE MODELING (SEAM): A WEB-BASED
SOLUTIONFOR INTEGRATEDMISSIONASSURANCE,” FactaUniversitatis, Series: Electronics and
Energetics, vol. 34, no. 1, Art. no. 1, Feb. 2021.

© Vanderbilt University 44

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

8 Linking Models

8.1 GSN + SysML

8.2 SysML + Functional Decomposition Model

8.3 Functional Decomposition + GSN

© Vanderbilt University 45

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

9 SEAMOutputs

9.1 Coverage Check

A coverage check is a process in SEAM that allows the cross-referencing of elements found in the Sys-
tem Architecture Model, the Functional Decomposition Model, and the GSN Assurance Model of a
specific system. During the coverage check, the goals, strategies, and solutions in GSN assurance ar-
guments are related to the functionalmodel and the systemmodel. This process is particularly useful
for complex systems where the assurance argument needs to account for a myriad of components,
as well as for their functional inter-dependences and propagated failures.

Figure IX. 1. Coverage check for the parts list. Each row corresponds to a partmodel in the parts
library

Figure IX. 2. Coveragecheck for the instance list. Each rowcorresponds toacomponent instance
in the systemmodel and its associated part in the part library

Each coverage check consists of a parts list, an instance list, a function coverage, a component cov-
erage, and a GSN coverage. The parts list (Figure IX. 1) is a table of part type models associated with
the current system model. Each part type model also serves as a hyperlink that allows the user to
navigate to the part model and its internal fault model.

The instance list (Figure IX. 2) is a table presenting all component instances in the system’s architec-
ture model. For each row, the component instance shows the corresponding part from the part li-

© Vanderbilt University 46

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

brary.

Figure IX.3. Coveragecheck for the functioncoverage. Eachrowcorresponds toa function in the
function decompositionmodel and the component (part) in the systemdesign that implements
the function.

The function coverage list (Figure IX. 3) is a table providing a summary of the functional decompo-
sition model. For each row, the function lists the component(s) implemented in the system model.
This table allows functions that lack a corresponding implementation component in the system to
be flagged. A function that lacks a corresponding implementation component informs the user that
either the functionality is not implemented, or the relationships have not been captured in the func-
tional decomposition model.2

Thecomponent coverage listmaps component instances in the systemmodel to theappropriate func-
tion(s) in the functional decompositionmodel. It is likely that component instances of the same part
support different functions in the system. Entries that are not related to any function are appropri-
ately flagged.2

The GSN coverage (Figure IX. 4) list presents a table detailing the coverage of assurance arguments in
the GSNmodel relative to the components in the system. It also lists the GSN goals and solutions for
the assurance argument related to each component instance in the system. It further identifies the
specific GSN goals related to each of the underlying component faults, each functional degradation
effectof thepropagating fault, andeachmitigation strategyassociatedwith the fault propagation.2

Overall, Figure IX. 4 shows an example GSN coverage table generated as part of the coverage check.
The first column corresponds to the component instance; the next column corresponds to any fault
originating fromwithin the component; this is followed by the effect (E) and themitigation response
(R) related to the fault propagation. The links to the GSN arguments are listed in the next column.

© Vanderbilt University 47

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Entries with no associated GSN arguments are flagged with a red question mark (“?”) symbol.

Figure IX. 4. Coverage check for GSN coverage. The table maps the parts in the system design
and their underlying faults to the GSN arguments (goals/solutions).

Thenext fewcolumns reveal the statusof the specificGSNgoal (Developed/ In-development), and the
result of the argument based on if it meets the specifications or not (yes/ no/ partial). “Information
Source” indicates if the argument pertains to the specific component instance or the part it corre-
sponds to. Action column reveals the user decision on the completion status of the argument (com-
pleted/needs attention/ ignore). The penultimate column allows for traceability and assignment of
individual arguments to persons. The comments column keeps a record of the comments related to
the decisions made pertaining to the arguments.3

9.2 Creating a Coverage Check

Before creating a coverage check, the user first begins with a GSNmodel (Figure IX. 5).

Figure IX. 5. Example of a GSNModel

© Vanderbilt University 48

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

Connected to the GSNmodel should be a functional decomposition model (Figure IX. 6).

Figure IX.6. Example of a Functional Decomposition Model

Clicking the top function will lead into a list of potential attributes for the functional decomposition
model that can have their targets adjusted (Figure IX. 7).

Figure IX.7. Context Selection Drop Down List

Clicking the ‘System Models’ context row brings the user to a new drop-down list where the ‘Target’
of the ‘Context’ can be altered (Figure IX. 8).

Figure IX.8. Target Selection Drop Down List

9.3 Fault Trees

Fault trees are graphical models that represent how low-level events, like component faults, com-
bine andpropagate to high-level events (like system-wide failures). The combination of the low–level

© Vanderbilt University 49

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

events is expressed using an AND/OR tree-like structure. The extraction of fault trees, as well as other
reliability artifacts, from SysML has been demonstrated as viablemeans of rapidly building reliability
models.

In this tree (Figure IX. 9), primary events are the leaves, intermediate nodes are either logical combi-
nators (disjunctive or conjunctive) or intermediate (e.g., sub-system level) events, and the top (root)
node of the tree is the system level event. The arrows connecting the nodes (from leaves towards the
root) indicate causation or enablement. The AND/OR operators operate on probabilities of events as-
signed by the modeler. Fault-trees allow not only the review and logical analysis of how local faults
combine and lead to system-level events, but also the calculationof theprobability of those events as
a function of the probabilities of the low-level events. Thus, they are very useful tools for evaluating
the reliability of the system, and in design. For the latter, when the designer changes the system (e.g.,
by introducing redundancy), the fault tree can help the quantitative evaluation of how the reliability
improves (or degrades).

Figure IX. 9 Fault Tree generated by SEAM based on the functional decomposition model, system
model and the underlying fault propagationmodel. Boxes represent top-event or intermediate event
in the fault tree. Boxes with a circle below represent the basic event. Loss of Function (LF) events are
in blue, Loss of component (LC) events are in brown and Failure mode events are in red. Triangle
represents the loss of mitigation function.

Figure IX.9. Fault Tree generated by SEAM based on the functional decomposition model, sys-
tem model and the underlying fault propagation model. Boxes represent top-event or inter-
mediate event in the fault tree. Boxes with a circle below represent the basic event. Loss of
Function (LF) events are in blue, Loss of component (LC) events are in brown and Failure mode
events are in red. Triangle represents the loss of mitigation function.

© Vanderbilt University 50

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

9.4 References

1. K. L. Ryder et al., “SYSTEMS ENGINEERING AND ASSURANCE MODELING (SEAM): A WEB-BASED
SOLUTIONFOR INTEGRATEDMISSIONASSURANCE,” FactaUniversitatis, Series: Electronics and
Energetics, vol. 34, no. 1, Art. no. 1, Feb. 2021.

© Vanderbilt University 51

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

10 SEAM STANDARD PARTS LIBRARY

The Standard Part Type Library is a SysML library of part types where all potential fault propagations
for a given part have been created according to the guidance of radiation effect experts. These part
types are also organized according to part family. This library can be utilized by a user to create sys-
tem models of their own circuits based on their mission environment’s radiation parameters. The
following families (66 total part types) and radiation concerns are considered in the Standard Part
Type Library.

Figure X.1 Families and Radiation concernts in Standard Parts Template

10.1 Instructions for using the Standard Part Type Library

In order to incorporate the Standard Part Type Library into SEAM, the user starts with creating a new
project in the Model Based System Assurance website. In Figure X. 1, we have created a new project

© Vanderbilt University 52

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

labeled ‘test.’

Figure X.1 New project with parts template library

After creating the project, the user adds the Standard Part Type Library directly into the new project

© Vanderbilt University 53

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

by duplicating the project labeled ‘admin/SEAM_Template,’ shown in Figure X. 2.

Figure X.2 New project with SEAM template

At this point, it is possible that the StandardPart Type Library needs tobeupdatedbasedonwhen the
last time ‘admin/SEAM_Template’ was updated. If this is the case, a light blue rectangle will appear
on the top right of the screen. Clicking this box will ensure the Standard Part Type Library is updated

© Vanderbilt University 54

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

based on the latest reviews by radiation effects experts (Figure X. 3).

Figure X. 3. Updating the Golden Part Library (only observable if library not in the most recent
version)

On the right sideof theworkspace, theuser canclick ‘Library’ to access theStandardPart TypeLibrary.
Clicking ‘Library.Definitions’ leads to models for both failure labels in ‘Library.FailureLabels’ and for

© Vanderbilt University 55

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

part templates in ‘Library.FailureTemplate.’ This is shown in Figure X. 4.

Figure X. 4. Accessing the Golden Part Type Library

Inside the ‘Library.PartTemplate,’ the user can find all part templates organized by part family (Figure

© Vanderbilt University 56

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

X. 5).

Figure X. 5. Opening ‘Digital Devices’ Family and ‘Clocks/Timing’ Family

Entering ‘WithPartsTemplate’ will allow the user to begin creating a Library, FunctionModel, and Sys-
temModel for their desired circuit. Once inside this folder, the user can drag and drop a Library from
the right and call it ‘Parts_Library.’ This will serve as a repository for all the user’s desired part in-
stances from the Golden Part Type Family. At this point, the user can also drag and drop the ‘Sys-
tem_Model’ folder, which will serve as the place for all schematic construction using the part in-

© Vanderbilt University 57

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

stances in the ‘Parts_Library’ folder. Both are shown in Figure X. 6.

Figure X. 6. Creating an appropriate area to contain the user’s preference of part templates

Once inside the ‘Parts_Library’ folder, the user can drag instances of part templates into this loca-
tion. By holding the ‘control’ button, the user can drag and drop an instance from the Golden Part
Library onto the workspace. In this example’s case, we dragged and dropped an FPGA block and a
Microcontroller block. If a pop-up box appears and asks whether to ‘Create instance here’ or ‘Copy
here,’ choose ‘Create instance here.’ Overall, creating instances of part types allows the user to mod-
ify the part type template within their project. Specifically, it will maintain a link to the user’s library
model found in the ‘Parts_Library’ folder. Another benefit is that updates to the Standard Part Type
Library by radiation experts will continue to be carried over into the user’s specific part library in the
‘Parts_Library’ folder. One final note is that inside an instance’s part template (which can be accessed
by double clicking the instance part template), we can adjust radiation effects but not delete them.

© Vanderbilt University 58

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

These steps can be visually seen in Figure X. 7.

Figure X. 7. Creating instances from Golden Part Library

Now that we have created a parts library within the ‘Parts_Library’ folder with relevant instances, the
user can create a systemmodel. The user can exit the ‘Parts_Library’ folder by clicking the ‘upward-
directed arrow’ symbol on the upper left of the screen. The user can then split the screen into two
vertical screens by clicking the top left icon that looks like a book. This feature is useful for looking at
a system model while also looking at our instance part library, all actions can be observed in Figure

© Vanderbilt University 59

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

X. 8.

Figure X. 8. Splitting the screen into two vertical screens

With both the part library and the system model folder open, the user can begin creating a system
failure propagation model for their circuit. To accomplish this, the user will need to hold the alt key
and drag a part instance from the part folder on the left into their systemmodel on the right. Multiple
instances of the same part can be created in this manner, and the names of each instance can be
changed by going into the attributes of a specific instance. This attributes section can be found on
the bottom right of the screenwhen clicking an instance (after it is in the ‘System_Model’ folder). The

© Vanderbilt University 60

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

user can then alter the name (Figure X. 9).

Figure X. 9. Creating instances in the ‘System_Model’ folder and changing the name of each
instance in the attributes section

Blocks can then be connected to each other in a way analogous to wiring electronic components
together. However, the usermust first decide uponwhich ports to connect to each other. It should be
done according to the circuit’s system architecture. Connections cannot be made between blocks in
the ‘Parts_Library.’ The ‘Parts_Library’ will not allow those connections to occur (Figure X. 10).

Figure X. 10. Wiring the part instances to each other via the ports

As mentioned previously, the SysML faults can also be accessed within each part instance by dou-
ble clicking the block (Figure X. 11). This provides the user a means of understanding how the faults

© Vanderbilt University 61

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

propagate through that specific part instance (from a given input to its output).

Figure X. 11. Observing how fault propagation occurs through a part instance’s input to its out-
put

The line placement of error labels can be adjusted by clicking the icon that shows three lines with
filled-in boxes on them (on the top row). Clicking this icon allows the user to readjust the error labels
into three different positions: left-side, center, or right-side (Figure X. 12)

Figure X. 12. Adjusting source label placement

The routing of lines can be altered in three distinct ways. Clicking the ‘straight arrow’ icon results in
all lines becoming straight lines. Clicking the ‘straight arrowwith 90˚ edges’ icon results in all arrows
bending at 90˚ edges to best reach its destination. Clicking the ‘straight arrow with 90˚ edges and
filled box in upper right’ icon allows the user to determine the location of those 90˚ edges. Specif-
ically, the user will need to double click at a particular part of the line and drag that point to the

© Vanderbilt University 62

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

user-degsired location (Figure X. 13)

Figure X. 13. Adjusting router of line

To create a function model, the user can leave the split screen mode, and drag and drop a ‘Fail-
ure_Model’ library from the left-hand side onto the screen (Figure X. 14).

Figure X. 14. Creating a Function Model based on the Golden Part Family Template

Theuser candouble click inside the ‘Failure_Model’ folder anddraganddropTopFunctions andPrim-
itive Functions onto the screen (Figure X. 15). These functions showhow functions can potentially fail

© Vanderbilt University 63

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

due to radiation effects. These failure modes can be connected to each other via the ports.

Figure X.15. Creating and connecting functions

If the user desires to reference a systemmodel in the function model, the user can return to the split
screen mode and have the systemmodel folder open on the right side of the screen. Then, the user
can hold the shift key and drag blocks from the systemmodel onto the functionmodel screen (Figure

© Vanderbilt University 64

Systems Engineering And Assurance Modeling (SEAM) 19 July 2023

X. 16).

Figure X. 16. Creating systemmodel references in the functionmodel

© Vanderbilt University 65

	Introduction to Model-Based Thinking
	Understanding Model-Based Qualitative Systems Modeling
	An Example of Quantitative Physical-Law Based Systems Modeling
	The First Model-Based System Representation: The Block Diagram
	The Second Model-Based System Representation: The Functional Decomposition Diagram

	Systems Engineering And Assurance Modeling (SEAM)
	What is Model-Based Mission Assurance and SEAM?
	Creating a SEAM Account
	Useful Resources
	Hosting a Local Version of SEAM
	SEAM Disclaimer

	SEAM - Project Management
	Projects
	Managing Projects
	Navigation

	Libraries and Resources
	Apps
	Definitions
	Libraries
	R&M Objective Hierarchy
	Requirements Models

	Goal Structuring Notation (GSN) Models
	Definition of GSN Elements
	NASA R&M Objective Hierarchy
	Creating a GSN Model
	Example GSN Model
	GSN Resources

	SYSTEMS MODELING LANGUAGE (SYSML) MODELS
	Definition of Boxes
	Creating a SysML Model
	Example SysML Model
	SysML Model Resources

	Functional Decomposition Models
	Definition of Boxes
	Creating a Functional Decomposition Model
	Example Functional Decomposition Models
	Functional Decomposition Model Resources

	Linking Models
	GSN + SysML
	SysML + Functional Decomposition Model
	Functional Decomposition + GSN

	SEAM Outputs
	Coverage Check
	Creating a Coverage Check
	Fault Trees
	References

	SEAM STANDARD PARTS LIBRARY
	Instructions for using the Standard Part Type Library

